Digital television ( DTV) is the transmission of television signals using Digital signal encoding, in contrast to the earlier analog television technology which used . In the 2000s it was represented as the first significant evolution in television technology since color television in the 1950s. Modern digital television is transmitted in high-definition television (HDTV) with greater resolution than analog TV. It typically uses a widescreen aspect ratio (commonly ) in contrast to the narrower format () of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit up to seven channels in the same bandwidth as a single analog channel, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2000. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:
A digital TV broadcast service was proposed in 1986 by Nippon Telegraph and Telephone (NTT) and the Ministry of Posts and Telecommunication (MPT) in Japan, where there were plans to develop an "Integrated Network System" service. However, practical digital TV service implementation was not available until the adoption of motion-compensated DCT video compression formats such as MPEG made it possible in the early 1990s.
In the mid-1980s, as Japanese consumer electronics firms forged ahead with the development of HDTV technology, and the MUSE analog format was proposed by Japan's public broadcaster NHK as a worldwide standard. Until June 1990, the Japanese MUSE standard—based on an analog system—was the front-runner, set to eclipse US electronics company solutions, among the more than 23 different technical concepts under consideration.
Simultaneously, between 1988 and 1991, European organizations: CMMT, ETSI, etc. were working on DCT-based digital video coding standards for both SDTV and HDTV. The EU 256 project by the CMTT and ETSI, along with research by Italian broadcaster RAI, developed a DCT video codec that broadcast SDTV at and near-studio-quality HDTV at about . RAI demonstrated this with a 1990 FIFA World Cup broadcast in March 1990.
Simultaneously, in March 1990, American company General Instrument demonstrated the feasibility of a digital television signal; persuading the FCC to delay its decision on an advanced television (ATV) standard until a digitally based standard could be developed; resulting in several actions. First, the FCC declared that the new TV standard must be more than an enhanced analog signal, capable of providing a genuine HDTV signal with at least twice the resolution of existing television images. Second, to ensure that viewers who did not wish to buy a new digital television set could continue to receive conventional television broadcasts, it dictated that the new ATV standard must be capable of being simulcast with NTSC on different channels. The new ATV standard also allowed the new DTV signal to be based on entirely new design principles incorporating many improvements over existing analog television.
A universal standard for scanning formats, aspect ratios, or lines of resolution was not produced by the FCC's final standard. This outcome resulted from a dispute between the consumer electronics industry (joined by some broadcasters) and the computer industry (joined by the film industry and some public interest groups) over which of the two scanning processes—interlaced or Progressive scan—is superior. Interlaced scanning, which is used by the electronics industry in televisions worldwide, scans even-numbered lines first, then odd-numbered ones. Progressive scanning, which is the format used in computers, scans lines in sequences, from top to bottom. The computer industry argued that progressive scanning is superior because it does not flicker in the manner of interlaced scanning. It also argued that progressive scanning enables easier connections with the Internet and is more cheaply converted to interlaced formats than vice versa. The film industry also supported progressive scanning because it offers a more efficient means of converting filmed programming into digital formats. The consumer electronics industry and broadcasters argued that interlaced scanning was the only technology that could transmit the highest quality pictures then (and currently) feasible, i.e., 1,080 lines per picture and 1,920 pixels per line. Broadcasters also favored interlaced scanning because their vast archive of interlaced programming is not readily compatible with a progressive format.
With digital terrestrial television (DTT) broadcasting, the range of formats can be broadly divided into two categories: high-definition television (HDTV) for the transmission of high-definition video and standard-definition television (SDTV). These terms by themselves are not very precise and many subtle intermediate cases exist.
One of several different HDTV formats that can be transmitted over DTV is: in progressive scan mode (abbreviated 720p) or pixels in interlaced video mode ( 1080i). Each of these uses a aspect ratio. Uncompressed HDTV cannot be transmitted over analog television channels because of channel capacity issues.
SDTV, by comparison, may use one of several different formats taking the form of various aspect ratios depending on the technology used in the country of broadcast. NTSC can deliver a resolution in 4:3 and in , while PAL can give in and in . However, broadcasters may choose to reduce these resolutions to reduce bit rate (e.g., many DVB-T channels in the UK use a horizontal resolution of 544 or 704 pixels per line). Latest snapshots - Freeview/DTT bitrates (Mendip transmitter, UK)
Each commercial broadcasting terrestrial television DTV channel in North America is allocated enough bandwidth to broadcast up to 19 per second using 8VSB modulation. However, the broadcaster does not need to use this entire bandwidth for just one broadcast channel. Instead, the broadcast can use Program and System Information Protocol and subdivide across several video (a.k.a. feeds) of varying quality and compression rates, including non-video datacasting services.
A broadcaster may opt to use a standard-definition (SDTV) digital signal instead of an HDTV signal, because current convention allows the bandwidth of a DTV channel (or "multiplex") to be subdivided into multiple digital subchannels, (similar to what most FM offer with HD Radio), providing multiple feeds of entirely different television programming on the same channel. This ability to provide either a single HDTV feed or multiple lower-resolution feeds is often referred to as distributing one's bit budget or multicasting. This can sometimes be arranged automatically, using a statistical multiplexer. With some implementations, image resolution may be less directly limited by bandwidth; for example in DVB-T, broadcasters can choose from several different modulation schemes, giving them the option to reduce the transmission bit rate and possibly improve reception for more distant or mobile viewers.
Other delivery methods include digital cable and digital satellite. In some countries where transmissions of TV signals are normally achieved by microwaves, digital multichannel multipoint distribution service is used. Other standards, such as digital multimedia broadcasting (DMB) and digital video broadcasting - handheld (DVB-H), have been devised to allow handheld devices such as mobile phones to receive TV signals. Another way is Internet Protocol television (IPTV), which is the delivery of TV over a computer network. Finally, an alternative way is to receive digital TV signals via the open Internet (Internet television), whether from a central streaming service or a P2P (peer-to-peer) system.
Some television signals are protected by encryption and backed up with the force of law under the WIPO Copyright Treaty and national legislation implementing it, such as the US Digital Millennium Copyright Act. Access to encrypted channels can be controlled by a removable card, for example via the Common Interface or CableCard.
Digital and analog signals react to interference differently. For example, common problems with analog television include ghosting of images, noise from weak signals and other problems that degrade the quality of the image and sound, although the program material may still be watchable. With digital television, because of the cliff effect, reception of the digital signal must be very nearly complete; otherwise, neither audio nor video will be usable.
Because of the way the human visual system works, defects in an image that are localized to particular features of the image or that come and go are more perceptible than defects that are uniform and constant. However, the DTV system is designed to take advantage of other limitations of the human visual system to help mask these flaws, e.g., by allowing more compression artifacts during fast motion where the eye cannot track and resolve them as easily and, conversely, minimizing artifacts in still backgrounds that, because time allows, may be closely examined in a scene.
Broadcast, cable, satellite and Internet DTV operators control the picture quality of television signal encoders using sophisticated, neuroscience-based algorithms, such as the structural similarity index measure (SSIM) video quality measurement tool. Another tool called visual information fidelity (VIF), is used in the Netflix VMAF video quality monitoring system.
Quantising effects can create contours—rather than smooth gradations—on areas with small graduations in amplitude. Typically, a very flat scene, such as a cloudless sky, will exhibit visible steps across its expanse, often appearing as concentric circles or ellipses. This is known as color banding. Similar effects can be seen in very dark scenes, where true black backgrounds are overlaid by dark gray areas. These transitions may be smooth, or may show a scattering effect as the digital processing dithers and is unable to consistently allocate a value of either absolute black or the next step up the greyscale.
may occur when transmission is done with compressed images. A block error in a single frame often results in black boxes in several subsequent frames, making viewing difficult.
For remote locations, distant channels that, as analog signals, were previously usable in a snowy and degraded state may, as digital signals, be perfectly decodable or may become completely unavailable. The use of higher frequencies add to these problems, especially in cases where a clear line-of-sight from the receiving antenna to the transmitter is not available because usually higher frequency signals can't pass through obstacles as easily.
The digital television transition began around the late 1990s and has been completed on a country-by-country basis in most parts of the world.
However, after the digital television transition, no portable radio manufacturer has yet developed an alternative method for portable radios to play just the audio signal of digital TV channels; DTV radio is not the same thing.
|
|